

Thrombocytopenia due to transcription factor defects and leukemia predisposition

Paul Saultier, MD PhD

APHM – Pediatric Hematology, Immunology, and Oncology Reference Center for Inherited Platelet Disorders (CRPP) Aix Marseille University – Inserm 1263 – C2VN

Marseille – France

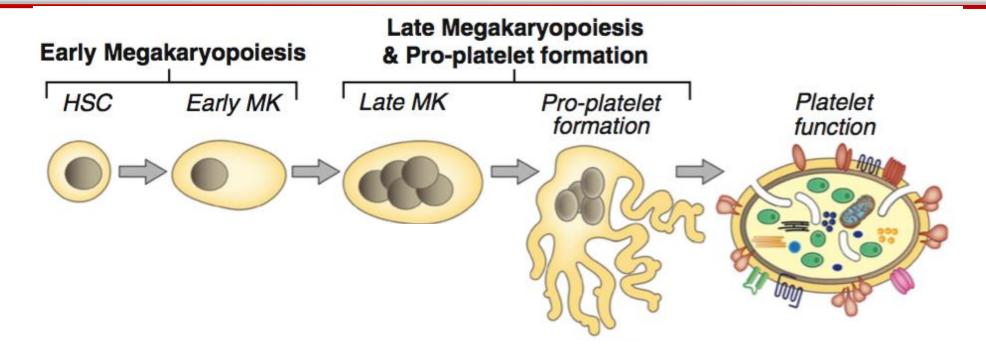
- Investigator in studies sponsored by Biomarin, Celgene, Gilead, Sanofi, and Takeda
- Support for attending scientific meetings and educational events: Baxalta-Shire, Global Blood Therapeutics, Novo Nordisk, Pfizer, Octapharma, Roche, Servier, and Sobi
- Honoraria (consultant / advisory boards) from Octapharma, Novartis, Servier, Clinigen, Sobi, and Jazz.

Constitutional thrombocytopenias associated with leukemia predisposition

- 1. Epidemiology and principal characteristics
- 2. How to diagnose these conditions?

The pediatrician / hospitalist / hemostasis specialist perspective

The Hem/Onc perspective

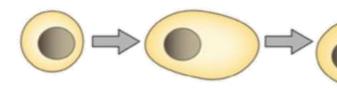

- 3. How to manage the bleeding risk?
- 4. Which hematological follow-up?

Hematological

Network

Early Megakaryopoiesis

Late Megakaryopoiesis & Pro-platelet formation


HSC

Early MK

Late MK

Pro-platelet formation

Platelet function

TPO/MPL signalling **THPO** MPL

Transcription regulation

GATA1 RUNX1 FLI1* ETV6 **GFI1B** HOXA11* MECOM* ANKRD26 RBM8A*

Granule biogenesis & trafficking

HPS1* LYST* **AP3B1*** VPS33B* HPS3* VIPAS39* HPS4* HPS5* STXBP2 **NBEA** HPS6* NBEAL2 DTNBP1* BLOC1S3* BLOC1S6*

Pathway Incompletely Defined

CYCS SRC* SLFN14 PLAU STIM1*

Cytoskeleton régulation

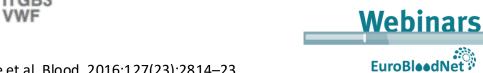
MYH9* WAS* ACTN1 FLNA* TUBB1 DIAPH1*

GP signalling

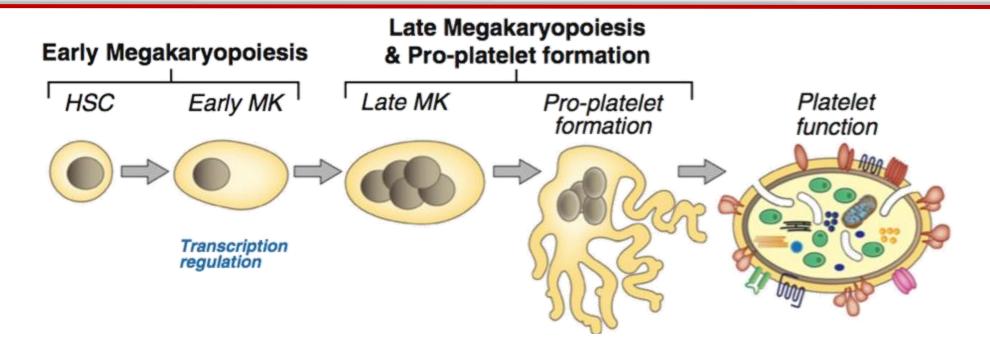
GP1BA GP1BB GP9 **ITGA2B** ITGB3

GPCR signalling

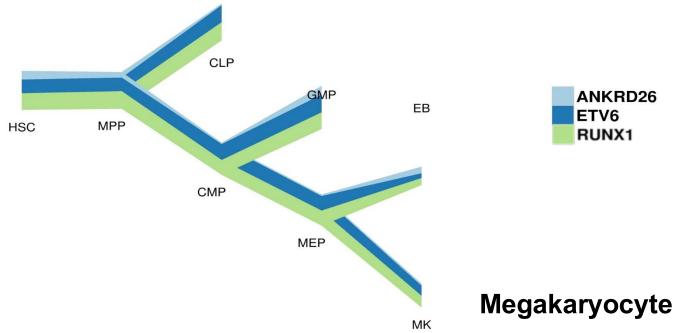
P2RY12 TBXA2R TBXAS1* PLA2G4A


GP receptor signalling

RASGRP2 GP1BA **FERMTS** GP1BB GP6 GP9


Other ANO6

RUNX1 ETV6 ANKRD26



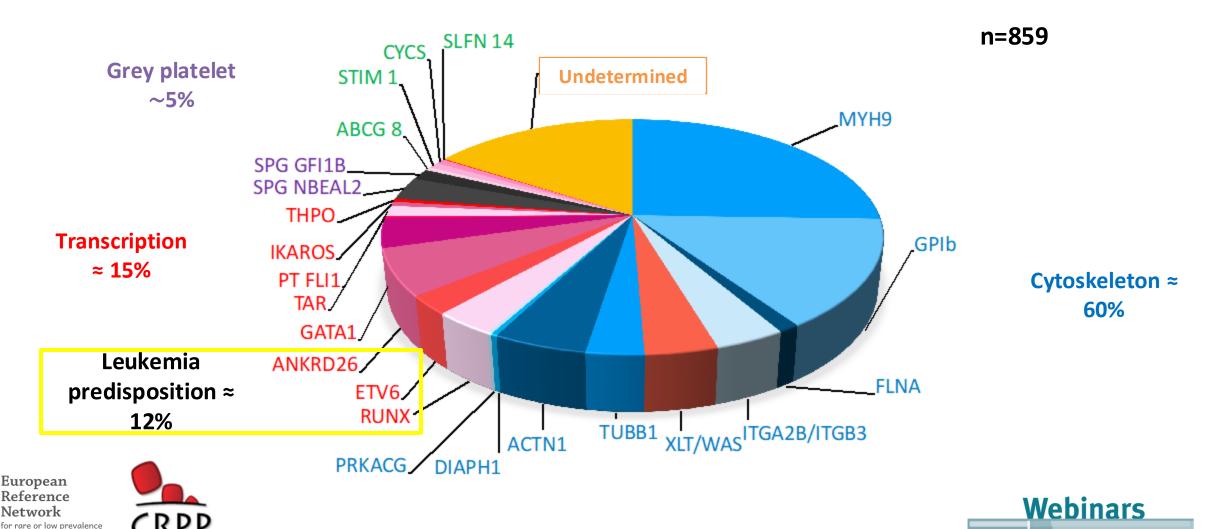
Expression in the hematopoietic lineage

Hematopoietic stem cell

RUNX1, ANKRD26, and ETV6 are crucial regulators of different stages of hematopoiesis

Constitutional thrombocytopenias associated with leukemia predisposition

Epidemiology and principal characteristics



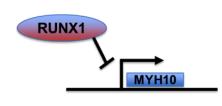
Epidemiology

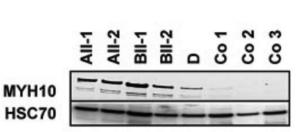
MHEMO

RUNX1 thrombocytopenia - FPD/MM

Autosomal dominant

No clear genotype-phenotype relationship


Thrombocytopenia


Mild to moderate, normal platelet volume

Platelet dysfunction (aspirin-like defect, α/δ -granule deficiency)

Platelet biomarker: MYH10

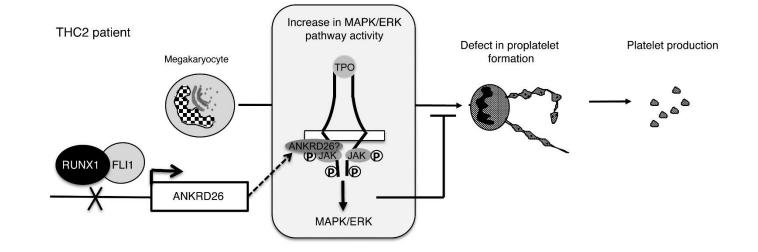
Extra-hematologic features: asthma and eczema

Myeloid +++ MDS, AML, T-ALL, MPAL, T-NHL, CLL, HCL Penetrance ~40% (variable according to families (10-100%)

Diseases (ERN EuroBloodNet)

Godley. Semin Hematol. 2014;51(4):306–321. Song et al. Nat Genet. 1999;23(2):166–175. Antony-Debré et al. Leukemia. 2016;30(4):999–1002. Antony-Debré et al. Blood. 2012;120(13):2719–2722. Cunningham L et al. Blood. 2023;142(25):2146-2158.

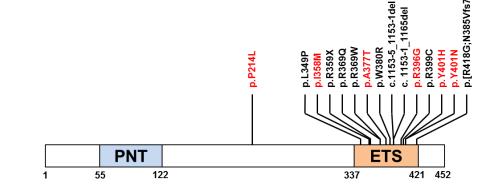
ANKRD26 thrombocytopenia (THC2)

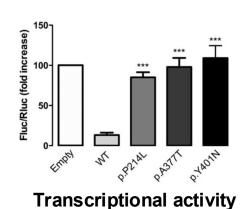

- Relatively frequent among constitutional thrombocytopenias (≈10%)
- Autosomal dominant
 Variants affect the 5'UTR region (promoter)
 Alter TPO signaling
- Thrombocytopenia
 Mild to severe (10-100 G/L)
 Normal platelet volume
 Absent/moderate bleeding
- Hematological malignancies

Myeloid +++: MDS, AML, CML Penetrance ≈10%

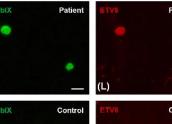
Diseases (ERN EuroBloodNet)

Noris et al. Blood. 2011;117(24):6673–6680. Noris Blood. 2013;122(11):1987–1989. Bluteau D et al. J Clin Invest. 2014;124(2):580-91. Boutroux et al. Eur J Pediatr. 2015;174(10):1399–1403. Basso-Valentina F et al. Haematologica. 2023 (ahead of print)

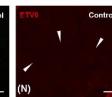

ETV6 thrombocytopenia (THC5)


Autosomal dominant Most variants affect the ETS DNA-binding domain

Thrombocytopenia


Mild to moderate, normal platelet volume Absent to moderate hemorrhagic syndrome Variable platelet function defect Increased ETV6 expression in platelets

Hematological malignancies: Childhood ALL +++, MDS, AML, MM, CMML 15/18 families, penetrance ≈15-25%



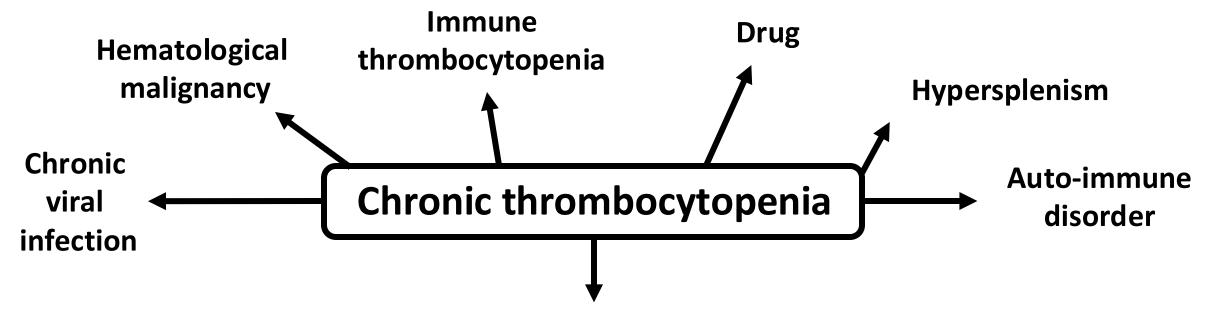
ETV6 patient

Control

or rare or low prevalence Diseases (ERN EuroBloodNet)

Zhang et al. Nat Genet. 2015;47(2):180-185. Noetzli et al. Nat Genet. 2015;47(5):535-538. Poggi et al. Haematologica. 2017;102(2):282-294. Zaninetti C et al. Br J Haematol. 2024;204(2):710-714.

How to diagnose constitutional thrombocytopenias associated with leukemia predisposition?


The pediatrician / hospitalist / hemostasis specialist perspective

Constitutional thrombocytopenia...

Family history of thrombocytopenia / abnormal bleeding Early onset of thrombocytopenia **Too symptomatic** (abnormal platelet function) Mild to moderate thrombocytopenia Poor response to IVIG/corticoids

...with leukemia predisposition?

Personal or family history of hematological malignancy Associated abnormality: other cell line abnormality Eczema, asthma

Variant classification and resolution of VUS

Data sharing initiatives and consortia

Myeloid Malignancy Variant Curation Expert Panel: specific classification rules for assessing RUNX1 variants pathogenicity

Functional assays:

- Established luciferase-based transactivation assays with known RUNX1 target gene (included in ACMG guidelines)
- Luciferase assays also established for assessment of ETV6 and ANKRD26 variants

How to manage the bleeding risk?

Managing bleeding risk in FPD-MM, THC2, and THC5

- Patients often present with mild-to-moderate platelet counts and mild-to-moderate bleeding risk
- Main risk: surgeries or childbirth
- Antifibrinolytics and platelet transfusions as clinically indicated
- Short course of TPO receptor agonists (ie, eltrombopag and romiplostim) before surgery may have clinical utility (off-label)

Phase II clinical data included patients with ANRKD26 thrombocytopenia (n=9), lower response than MYH9/mBSS Further long-term clinical data needed, especially with long-term administration Usually, platelet response is observed within 3 weeks

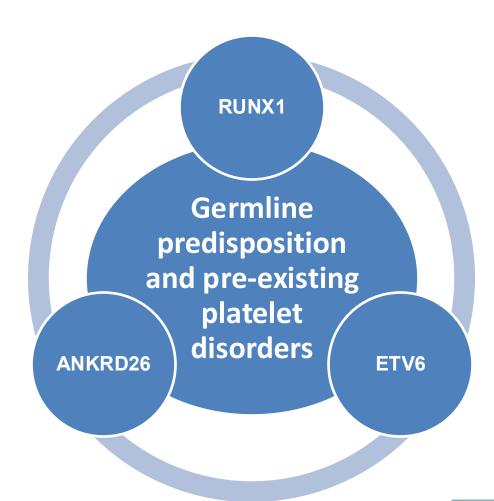
How to diagnose constitutional thrombocytopenias associated with leukemia predisposition?

The Hem/Onc perspective

WHO 2022 classification of myeloid neoplasms

Myeloid neoplasms with germline predisposition without a preexisting platelet disorder or organ dysfunction

- Germline CEBPA P/LP variant (CEBPA-associated familial AML)
- Germline DDX41 P/LP variant^a
- Germline TP53 P/LP variant^a (Li-Fraumeni syndrome)


Myeloid neoplasms with germline predisposition and pre-existing platelet disorder

- Germline *RUNX1* P/LP variant^a (familial platelet disorder with associated myeloid malignancy, FPD-MM)
- Germline ANKRD26 P/LP variant^a (Thrombocytopenia 2)
- Germline ETV6 P/LP variant^a (Thrombocytopenia 5)

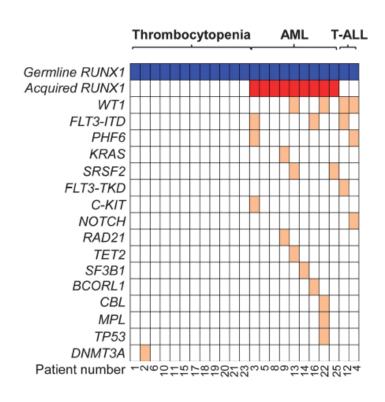
Myeloid neoplasms with germline predisposition and potential organ dysfunction

- Germline GATA2 P/LP variant (GATA2-deficiency)
- Bone marrow failure syndromes
 - Severe congenital neutropenia (SCN)
 - Shwachman-Diamond syndrome (SDS)
 - o Fanconi anaemia (FA)
- Telomere biology disorders
- RASopathies (Neurofibromatosis type 1, CBL syndrome, Noonan syndrome or Noonan syndrome-like disorders^{a,b})
- Down syndrome^{a,b}
- Germline SAMD9 P/LP variant (MIRAGE Syndrome)
- Germline *SAMD9L* P/LP variant (SAMD9L-related Ataxia Pancytopenia Syndrome)^c
- Biallelic germline BLM P/LP variant (Bloom syndrome)

→ Toward a genetic basis for defining diseases

Screening at leukemia diagnosis

- Family or personal history of chronic thrombocytopenia
- Routine use somatic cancer gene panels at leukemia diagnosis
 - Scrutiny for ETV6, RUNX1, ANKRD26 variants
 with high VAF (>30%)
 - Variant suspicious of being germline:
 - → germline confirmation
 - → genetics referral for patient and family

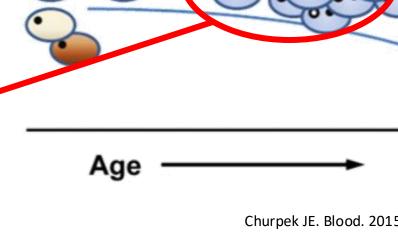


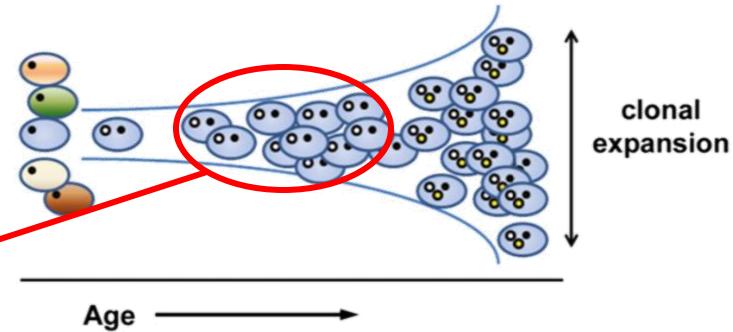
RUNX1 variants induce genomic instability

Genomic instability

Additional somatic variants in myeloid MDS/AML:

- RUNX1 +++ (biallelic alteration)
- Other variants: TET2, ASXL1, BCOR, PHF6, SRSF2

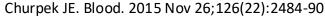



RUNX1 variants induce genomic instability and early onset clonal hematopoiesis (CHIP)

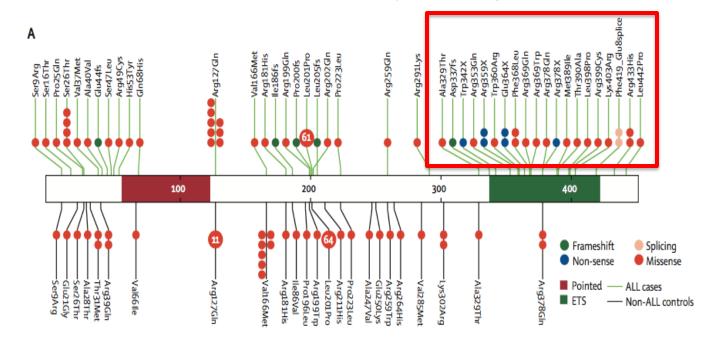
Asymptomatic

- Germline RUNX1 mutation
- Somatic mutations driving clonal expansion
- MDS/AML initiating mutations

67% of RUNX1 patients under age 50 have CHIP



MDS/AML



ETV6 predisposition and childhood ALL

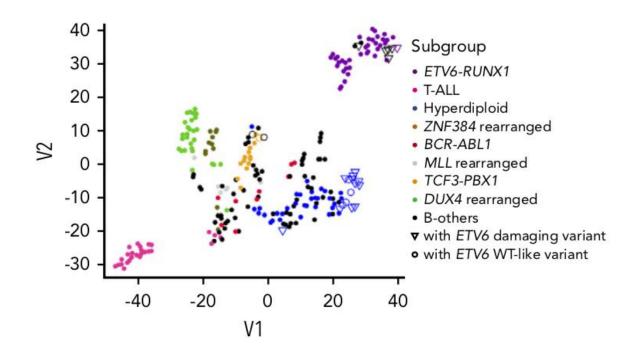
Childhood ALL (n=4405): ETV6 sequencing (constitutional)

CASES (childhood ALL)

CONTROLS (general population)

Childhood ALL: ~1% ETV6 constitutional variant

Hyperdiploid B-ALL of older children No impact on early response / relapse

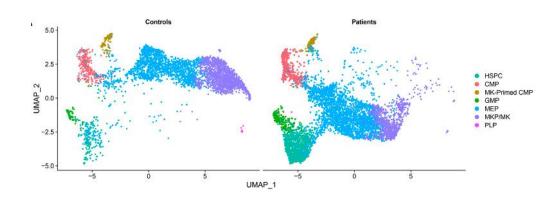


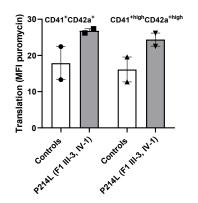
ETV6 predisposition and childhood ALL

ETV6 predisposition somatic signature

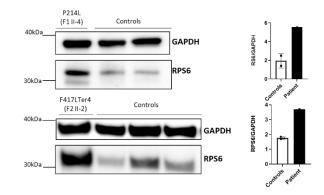
1) Hyperdiploidvariants RAS pathway2) Diploid

Focal deletion ETV6, PAX5




ETV6 variants alter ribosome biogenesis and translation machinery

Strong transcriptomic differences in the MEPs and MKs from ETV6 patients


Dysregulated "DNA repair" and "translation" pathways

Increased translation levels

Increased ribosomal protein RPS6 expression in MKs / platelets

Gabinaud

C2VN, Inserm 1263 Bigot T et al. J Thromb Haemost. 2023;21(9):2528-2544.

Constitutional thrombocytopenia with leukemia predisposition

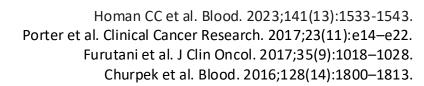
	RUNX1	ETV6	ANKRD26
Transmission		Autosomal dominant	
Bleeding	0 to ++	0 to ++	0 to +
Thrombocytopenia	0 to +	+	+ to +++
Platelet volume	*******************	Normal	
Hematological malignancy	~40% Myeloid +++ All age groups (m=35y)	15 - 25% ? Pediatric B-ALL +++ AML/MDS in adults	~10% Myeloid +++ older adult (m=40y)
Somatic signature	Loss of RUNX1 WT allele	Hyperdiploidy Loss of ETV6 WT allele	

Which hematological follow-up for constitutional thrombocytopenias associated with leukemia predisposition?

Hematological initial workup and follow-up

No evidence-based guidelines

Hematological initial workup and follow-up


At diagnosis: clinical examination + CBC + BM assessment + cytogenetics + somatic NGS panel Follow-up /6-12 months: clinical examination + CBC + somatic NGS panel in peripheral blood In case of clinical/CBC abnormality or clonal evolution (NGS): repeat BM assessment Clinical utility of assessment of clonal evolution using NGS need further prospective data

In case of hematological malignancy

Identification of a related donor who does not carry the germline variant Indication for HSCT in CR1 to be discussed (RUNX1+++, ETV6?, ANKRD26?)

Conclusion

Thrombocytopenia should be explored even in the absence of bleeding (after patient information)

Clinical and biological diagnosis

- Family history, autosomal dominant transmission, normal platelet volume and smears, gene sequencing+++
- At hematological malignancy stage: somatic signatures

Pathophysiology: transcription/signaling defect, genomic instability, secondary events, loss of WT allele

Bleeding risk management:

- Mainly for surgeries or childbirth
- Antifibrinolytics and platelet transfusion as clinically indicated
- Short course TPO receptor agonists (ie, eltrombopag and romiplostim) before surgery may have clinical utility

Hematological initial workup and follow-up (incl. sequential NGS), anticipate HSCT

Perspectives

- prediction / monitoring of progression to MDS/leukemia
- gene therapy / pharmaceutical approach to restore RUNX1/ETV6/ANKRD26 gene function
- targeted therapies for clonal secondary events

Acknowledgments

C2VN lab, Inserm 1263, Aix Marseille Université – **CRPP (French Reference Center for Inherited Platelet Disorders)** Laboratory of Hematology, La Timone Hospital, APHM, Marseille France

Marie Christine Alessi Marjorie Poggi Pierre Emmanuel Morange Timothée Bigot

Elisa Gabinaud

Céline Falaise Pierre Morange Noémie Saut Marie Loosveld

French Reference Center for Inherited Platelet Disorders

MHEMO

Department of Pediatric Hematology, Immunology, Oncology, La Timone Children Hospital: Hervé Chambost, Gérard Michel

EuroBloodNet: Mariangela Pellegrini, Maryam Lalem, Pierre Fenaux, Béatrice Gulbis

